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A b s t r a c t

Among the various non-neuronal cell types known to express and utilize
neuropeptides, those of the immune system have received much attention in
recent years. In particular, comparative studies in vertebrates and invertebrates
have shown that endogenous opioid peptides are engaged in receptor mediated
autoregulatory immune and neuroendocrine processes. The majority of these
immune processes are stimulatory, as determined by their effects on
conformational changes indicative of immunocyte activation, cellular motility,
and phagocytosis. Endogenous opioid peptides form an effective network of
messenger molecules in cooperation with cytokines, opiate alkaloids, and certain
regulatory enzymes (neutral endopeptidase 24.11). Peptide-mediated
immunostimulatory effects observed in this system are operationally
counteracted by the inhibitory effects of morphine and related opiates.
Opioid/opiate signaling processes are mediated by several types of receptors
with different degrees of selectivity. Among them the recently identified, opioid
insensitive µ3 receptor deserves attention on account of its specificity for opiate
alkaloids.
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Introduction

There is a growing realization in biological sciences that neuropeptides,
formerly thought to be produced by a select group of neurons, are found
in a variety of non-neuronal cells. Comparative studies in vertebrates and
invertebrates [1-4] have highlighted the biological importance of
immunoactive cells which make use of neuropeptides for autoregulatory
control as well as the bidirection exchange of information between the
immune system and the neuroendocrine system. Along with cytokines, long
considered to be the primary messenger molecules of the immune system,
endogenous opioid peptides form an effective network of communication.
Previous studies demonstrated the presence of opioid peptides and opiate
alkaloids in both invertebrate and vertebrate nervous and immune systems
along with highly selective types of opioid receptors [5-9]. 

Functional aspects

Biological activities associated with proinflammatory processes that
have been analyzed in detail in higher invertebrates as well as vertebrates
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include cellular adherence, locomotory activity and
conformational changes of immunocompetent cells
(see Scharrer and Stefano, 1994). Adherence of
mammalian neutrophils and invertebrate
immunocytes is enhanced by opioid neuropeptides
(see [10, 11]). In human neutrophils substance P (10-
11 M) modulates the expression of two cell-surface
adhesion molecules, Mo 1 and LAM-1 [12].
Polymorphonuclear leukocytes (PMN), lymphocytes,
and monocytes as well as invertebrate
immunocytes in addition to random movements
(chemokinesis), show migratory behavior directed
toward sites of inflammation or antigenic challenge
(chemotaxis). In an vitro study by Heagy [13-18] and
colleagues, T-lymphocytes exhibited chemotaxis in
the presence of a concentration gradient of Met-
enkephalin or b-endorphin. Synthetic enkephalin
analogs, including DADLE (D-Ala2-D-Leu5-
enkephalin), DPDPE (D-Pen2-D-Pen5-enkephalin),
and DAG0 (D-Ala2-MePhe4Gly5-enkephalin)
stimulated the T-cells to a lesser extent, a finding
that will be discussed below. In vitro tests with
immunocytes of Mytilus and Leucophaea showed
chemotactic movements and the formation of large
cellular clumps after opioid peptide exposure along
with the same poor reaction to DADLE (see [19-21]).

Furthermore, changes in the activity of human
and invertebrate immunocytes are preceded by
characteristic conformational alterations. Prior to the
onset of locomotory behavior, stimulated by opioid
peptides, the following signs indicative of cellular
activation are observed. Mammalian and
invertebrate cells in the inactive condition are more
or less rounded, upon activation show an increase
in cellular size and surface area and/or the formation
of pseudopodia. D’Ala2-Met5-enkephalinamide
(DAMA) is most effective in inducing these changes.
DADLE, the compound most closely related to DAMA,
is not as potent in mammalian and invertebrate
immunocytes (see [19-25]). The distinctly lower
effectiveness of DADLE in both human and
invertebrate immune reactions is in contrast to the
situation in the mammalian nervous system where
no discrepancy in the binding potency of Met-
enkephalin and Leu-enkephalin has been observed
(see [10]). Taken together, these studies demonstrate
that opioid peptides exhibit, in general, immuno -
stimulatory actions. 

Immunocyte opioid receptors

Deltorphin I, a naturally occurring opioid peptide
isolated from amphibian skin, has the ability to
modulate both human and invertebrate immuno -
regulatory activities in a manner quite similar to
Met-enkephalin [26]. Its binding and pharma -
cological studies also have provided evidence 
for a special subtype of δ opioid receptor δ2, 
sensitive to naltrindole antagonism [3, 4, 10, 27], on

human and invertebrate immune cells [26]. The
results obtained with deltorphin I support the view
that the special role played by endogenous Met-
enkephalin in immunobiological activities of
vertebrates and invertebrates is mediated by
a special subtype of delta opioid receptor, δ2. It is
also of interest to note that both the invertebrate
immunocytes and human granulocytes thus have
a δ1 and δ2 receptor.

Opiate alkaloids

While opiate alkaloids, e.g., morphine, are not
opioid peptides they do deserve special attention
within the context of this review for several reasons.
First, unlike antinociceptive mechanisms, opiate
alkaloids and opioid peptides initiate different
immunocyte behaviors [10]. As noted above, opioid
peptides may be generally regarded as immunocyte
stimulatory and/or activating ligands whereas
morphine, noted first by Wybran et al. [28], is inhibi -
tory. Secondly, confusion exists in the scientific
literature as to the proper terminology for these
ligands, e.g., opioid alkaloid and opiate peptide.
Thirdly a novel opiate alkaloid and opioid peptide
insensitive receptor, namely µ3, has been demon -
strated which does not recognize µ-opioid ligands
[6, 29-37]. Lastly, opiate alkaloids appear to be
naturally occurring substances found both in
mammals and invertebrates (see [6-10, 29, 32, 33,
35-42]). 

The above reports demonstrate that morphine
and codeine substances were found in the pedal
ganglia, hemolymph and mantle tissues of the
mollusc Mytilus edulis [38, 39]. The pharmacological
activities of the endogenous morphine material
resemble those of authentic morphine. Both
substances were found to counteract, in a dose
dependent manner, the stimulatory effect of tumor
necrosis factor (TNF)-α or interleukin (IL)-1α on
human monocytes and Mytilus immunocytes. The
immunosuppressive effect of this opiate material
expresses itself in a lowering of chemotactic activity,
cellular velocity and adherence as well as making
active immunocytes inactive (rounded). These
pharmacological effects of morphine on
immunocytes are consistent with those actions
attributed to opiates reported in the literature (see
[10]). Indeed, it has been surmised that mor -
phinergic transmission may regulate the down
regulation of immune activation (see [6-8, 31, 32,
35-37, 40, 41, 43-49]).

Along with the opiate substances found in
animal tissues came the recent discovery of
a specific high-affinity and novel receptor site (µ3)
for opiate alkaloids on human monocytes as well
as Mytilus immunocytes [29, 30, 50]. A variety of
opioid peptides, tested by two methods, were found
to be ineffective in displacing specifically bound 
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3-dihydromorphine. By contrast, the opiate
alkaloid m ligands were potent and κ ligands
dynorphin 1-17 and ethyl-keto-cyclazocine (EKC)
were weak. Based on this novel displacement
information we assigned this opioid peptide
insensitive and opiate alkaloid sensitive site the
name µ3 [29]. Studies demonstrate that human
granulocytes also contain the µ3 subtype opiate
receptor mediating inhibition by morphine and
other opiates of cytokine-induced activation and
chemotaxis [51-53]. Furthermore, in the presence
of NaCl (50 mM) plus the GTP analog GppNHp 
(100 µM), there was a significant decrease in
specific high-affinity binding of the agonist ligand
3H-morphine. The influence of the GTP analog
GppNHp on binding indicated that the granulocyte
receptor was linked to a G protein [52]. The
discovery of this receptor site mediating opiate
effects was first found in an invertebrate and then
in man, again demonstrating the value of the
comparative approach [54]. 

It is important to note that the cloning of delta,
mu and κ receptors has now been accomplished
[55-58]. As a result of these and other studies now
published it will be possible to study individual
receptors regarding their effector coupling,
pharmacological characteristics, regulation of
expression as well as their regional distributions.
Important information will also become available
regarding their evolvement. 

Biomedical significance 

The biomedical importance of a well balanced
immunoregulatory system is illustrated by the
consequence of interference with its normal
operation (see [27, 59]). Recent studies have shown
that immunosuppression effected by neuropeptides
may determine the course of certain diseases
caused by parasites or viral infection [60-66]. There
is experimental evidence supporting the concept
that in schistosomiasis the parasite escapes
detection and an effective immune reaction in the
host by using the same signal molecules operating
in the human immune and autoimmunoregulatory
system. The release of ACTH by the adult parasite,
and its conversion to a-MSH by NEP on human
PMNs, inactivates specific defense cells and thus
interferes with proper surveillance. Furthermore,
the human immunodeficiency virus appears to have
the ability to stimulate the production of ACTH by
human immune cells [65] thus creating a scenario
similar to that described for the parasitic worm. It
is becoming quite clear that these peptides play
important immunoregulatory roles, actions that
include neuroimmune as well as autoimmuno -
regulatory mechanisms. 

Furthermore, recent work has elucidated the
enzymes and other regulatory phenomena involved

with morphine biosynthesis and their regulation
[31, 34-40, 44, 45, 67-73]. It is important to note that
substances of abuse impact this system and appear
to work, in part, by releasing morphine from cells
that make it [7, 31, 34-36, 74-76].

Conclusions

I surmise that we are just scratching the surface
of the involvement of neuropeptides and opiate
alkaloids in immune and vascular regulation. This
review has mainly emphasized the roles of opioid
and related peptides, clearly leaving out many other
types of peptidergic signaling compounds. For the
most part, it is the opioid/opiate “story” that has
emerged in recent years. Thus, we will undoubtedly
look forward to the activities and presence of other
peptidergic signaling molecules being used both in
autoimmunoregulation and neuroimmuno regu -
lation. Given the presence of many of these
signaling molecules in neuroendocrine structures
the field of neurosecretion will grow to include, if
it hasn’t already done so, neuroimmunology. 
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